
Symbolic AI
Symbolic  artificial  intelli-

gence  refers  to  a  variety  of
methods  that  directly  operate
on symbolic representations of
the world. Symbolic AI has been
successful  in  a  variety  of  do-
mains,  including  planning,
scheduling,  natural  language
processing  and  game  playing.
Symbolic  AI  methods,  such  as
expert systems, remain the pre-
ferred  choice  in  critical  real-
world  applications  where  hu-
man  control  and  transparency
are  essential  and  the  conse-
quences of errors significant.

Progress  in  symbolic  AI  has
been hindered by its inability to
effectively learn from data and
its reliance on fixed rules, which
can  make  it  less  effective  at
handling  uncertainty  and  new
situations.  In  recent  years,
these  limitations  have  made it
difficult  for symbolic  AI  to  de-
velop as fast as the more adapt-
able  and  data-driven statistical
learning methods such as neural
networks.

While  neural  networks  gen-
erate  internal  representations
of data that are not easily inter-
pretable  by  humans,  symbolic

AI uses user-defined symbols to
represent  concepts  and  rela-
tionships.  This  makes  symbolic
AI methods more easily under-
stood  and  interpreted  by  hu-
mans, making them well-suited
to tasks  that  require  clear  and
interpretable  models.  On  the
other  hand,  the internal  repre-
sentations  of  neural  networks
seem to be essential for learn-
ing and adaptability.

Algebraic Machine 
Learning

Algebraic  Machine  Learning
(AML) [1] is a new mathematical
approach  that  combines  user-
defined symbols  with  self-gen-
erated  symbols.  Generated
symbols provide internal repre-
sentations that  permit  AML to
learn from the  data  and adapt
to  the  world  like  neural  net-
works do. 

AML is a purely symbolic ap-
proach  and  neither  uses  neu-
rons  nor  is  a  neuro-symbolic
method.  Algebraic  Machine
Learning does not use parame-
ters and it does not rely on fit-
ting,  regression,  backtracking,
constraint  satisfiability,  logical
rules, production rules or error
minimization.  Instead,  AML re-

lies  on  various  notions  of  ab-
stract algebra such as semantic
embeddings,  algebraic  freedom
and  subdirect  irreducibility.
Each of these will be explained
in  this  text.  We  will  start  by
providing a concise description
of  the  whole  AML  approach
and  then  we  will  explain  it  in
more detail.

At  the  heart  of  AML is  the
idea that once input data is em-
bedded in an idempotent alge-
bra,  an algebraic model  is  pro-
duced. It turns out that the sub-
directly irreducible components
of the algebraic model naturally
capture the main characteristics
of the data. Generalization then
occurs  by  simply  selecting  a
suitable  subset  of  said  subdi-
rectly  irreducible  components.
Each of the many possible sub-
sets  represents  a  generalizing
model.

A detailed explanation
By an algebra we refer to an

abstract  algebra[2],  discrete  or
continuous. An algebra is a set
of  objects  and a set  of  opera-
tions,  where  each  operation
transforms one or many objects
into  other  objects  of  the  set.
Numbers and their internal op-
erations, such as addition, form
an  algebra.  However,  we  can
make almost everything into an
algebra! For example, the ingre-
dients  in  our  kitchen  could  be
our  set  and the  various  things
we can do to them the opera-
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This white paper explains, in simple terms, the main ideas be-
hind Algebraic Machine Learning (AML) and provides insights
on how and why it works. AML is a symbolic method that is
good for reasoning and has the advantage of being able to
learn from data.  AML can use continuous input and output,
can  deal  with  uncertainty  and  can  combine  learning  from
both, data and formulas. These unique properties show that
the main limitations of symbolic methods can be overcome
and open a path to a more transparent, trustworthy and un-
derstandable AI.



tions.  One  operation,  baking,
transforms dough into bread.

For AML, the algebra should
have at least one idempotent[2]
operation, i.e., an operation that
satisfies the axiom: a  a = a.⊙
The  simplest  algebra  we  can
use for AML is a semilattice [2]
that  only  has  one  idempotent
commutative  and  associative
operation. 

With the word “embedding”
we refer to a particular form of
encoding  known  as  “semantic
embedding”  [2,3],  which  is  a
representation  of  one  mathe-
matical  structure  into  another.
Theoretical computer scientists
and  mathematical  logicians
have  used  semantic  embed-
dings  to  study  undecidability
[2], for example.  

An embedding in AML [4, 5]
has the  form of  a  set of  rules
(formal  expressions)  provided
by the user.  The formal expres-

sions  represent  both,  the  data
and the things we know about
the  data,  such  as  constraints,
laws,  symmetries  or  even  the
goal of the task at hand. A se-
mantic  embedding  in  the  con-
text of AML should not be mis-
taken with the term of the same
name used in the field of neural
networks. 

The  word  “model”  is  used
here with the same meaning as
in model  theory[3].  A model  is
an instance (an example) of an
algebra  that  satisfies  the  rules
of  a  semantic  embedding.  The
word “model” is also used in the
field of neural networks but this
time the  meaning  is  similar.  A
model, in the context of AML, is
an  instance  of  an  algebra,  for
example a particular semilattice,
in the same manner that a neu-
ral network model is a particular
configuration  of  a  neural  net-
work weights and architecture.  

AML relies on a mechanism
to go from the embedding for-
mulas  to  the  algebraic  model.
For  semilattices,  this  mecha-
nism can be based on an opera-
tion,  full  crossing[1,  4],  and its
sparse  version[1],  the  sparse
crossing,  which  is  a  stochastic
method.   With this  mechanism
we  could  say  that  AML  syn-
thetizes  its  own  parameters,
that  are  created  automatically
when needed and are born with
their definitive value.  We refer
to such synthetized parameters
as atoms [1, 4].

Atoms  represent  the  model
in  a  very  particular  manner;
atoms  map  one-to-one  to  the
subdirectly  irreducible  compo-
nents of the model and that is
key  as  irreducible  components
break up the data in its funda-
mental  constituents.  What  are
the irreducible components? 
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Figure 1: Some example applications of AML. From left to right, top to bottom. 1 - MNIST digit classification [1].  
2 - N-Queen completion problem [1,5]. 3 - Maze pathfinding. 4 – Sudoku [5]. 5 - Hamiltonian paths and Hamiltonian
cycles [5]. 6 - OPPORTUNITY dataset[6] for human movement recognition [7].



Subdirect irreducibility 
and the mechanism of 
AML

Imagine  an  algebraic  model
that  describes  a  piano  key-
board. Each element of the al-
gebra is a note, a key of the pi-
ano. The algebra may have vari-
ous operations compatible with
playing piano, for example, one
operation steps up a note one
semitone, i.e., it maps one piano
key to the adjacent key to the
right.  Our algebra can be repre-
sented  as  a  Cartesian  product
of  two  algebraic  models:  one
model with the twelve notes of
one octave and another model
with  the  seven octaves  of  the
piano.   Each  component  cap-
tures  independent  aspects  of
the model and provides an opti-
mal  decomposition  of  the  dia-
tonic scale. 

An intelligent  system listen-
ing to piano should ideally dis-
cover  this  decomposition.  The
same  system  reading  sport
news should discover that play-
ers  in  a  world  tournament  are

better  understood  as  elements
in a Cartesian product of team
and role within the team. 

However,  in  most  cases
things are more complicated as
concepts  cannot  be  decom-
posed so cleanly. The same oc-
curs to algebras. In the general
case, an algebraic model cannot
be represented as a product but
it  is  always  possible  to  repre-
sent it as a subdirect product. A
subdirect product is similar to a
product  but  somehow weaker.
It is the best decomposition we
can do when a  product  is  not
possible. The fact that any alge-
braic model can be represented
as  a  subdirect  product  of  irre-
ducible models is known as the
Birkhoff's subdirect representa-
tion [2] theorem. 

To further illustrate the con-
cept  of  a  subdirect  product,
consider now the group of the
Rubik's  Cube  configurations.
The  operations  of  this  algebra
(a group) are the possible ways
to rotate the faces of the cube.
This  group  cannot  be  repre-
sented as a direct product but it

can be represented as a subdi-
rect product of the corner ori-
entation,  corner  permutation,
edge orientation and edge per-
mutation  groups.  These  four
component  groups  describe
how the face rotations change
the  cube  configuration.  The
group  of  configurations  is  a
subdirect product because it is
a subgroup of the direct prod-
uct of these component groups.
It is  not  equal to the cartesian
product  of  the  component
groups  because  not  all  edge
permutations  are  compatible
with each other,  neither are all
corner  orientations  compatible
with each other. Only some ele-
ments of the cartesian product
of  the  components  are  valid
configurations  of  the  cube.
These  valid  elements  form  a
subalgebra which, in the case of
the cube, is a subgroup that ac-
tually  permits  resolving  the
cube.

The  Rubik's  Cube  exempli-
fies well  what happens in gen-
eral.  Our  algebraic  model  can-
not be represented as a product
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Figure 2: The training dataset and formal knowledge about the problem are expressed as logic formulas. These equa-
tions use symbols defined by the user. Using sparse crossing we can embed these equations into an algebraic model.
The algorithm itself generates the necessary symbols.



but it  can be represented as a
subalgebra  of  a  direct  product
of  irreducible  algebraic  models
(components). These irreducible
components  capture  essential
properties of the data, and they
are  “irreducible”  because  they
cannot be further decomposed
into smaller components.

There  are  two  things  to  be
determined in this context: the
irreducible components and the
location  of  the  subalgebra
within the product of the irre-
ducible  components,  i.e.,  the
identification  of  the  subset  of
valid elements within the direct
product. Each atom in AML re-
lates simultaneously to both: to
one irreducible component and
to the location of the model as
a subalgebra.

AML  understands  the  data
by  breaking  it  up  into  its  irre-
ducible components and this is
possible  when  the  data  is  em-
bedded  in  an  algebra.  This
mechanism  provides  the  best
possible decomposition for the
data and it can be proven that if
the  data  is  generated  using
some  hidden  rule  this  mecha-
nism  will  eventually  discover

the rule with a sufficiently large
amount of data.

Understanding is not just the
capability  to  predict,  it  is  the
ability to break things up into its
fundamental constituents which
results in the capability to pre-
dict. AML proposes to use sub-
direct  products to achieve this
goal. 

Generalization
The set of all the atoms con-

tain  the  same  information  as
the input data. In fact, the set of
all  the atoms spawn the freest
model of the embedding formu-
las.  The  freest  model  of  the
data is the model that assumes
nothing more than the data it-
self  and it  is  equivalent  to the
data.

It is usually the case that the
freest  model  requires  a  very
large  number  of  atoms  to  be
described.  The  number  of
atoms  needed  often  exceeds
the size of the input data by or-
ders of magnitude. However, it
turns out that, at least for semi-
lattices  and  other  closely  re-
lated algebras, it is always pos-
sible (and easy) to find suitable
subsets  of  atoms,  the  size  of

which is (a lot) smaller than the
size of the input data. 

The  suitable  subsets  of
atoms are those that satisfy the
constraints  of  the  embedding.
Each  suitable  subset  contains
less information than the whole
model and yet suffices to satisfy
all the constraints, thereby hav-
ing generalizing capabilities. We
just need to find one among the
immense  number  of  suitable
subsets  to  find  a  generalizing
model.   

A  consequence  of  having
many  more  atoms  than  input
data  is  that  small  subsets  of
atoms  cannot  overfit  as  they
contain  a  lot  less  information
than the input data.

In AML, error is never com-
puted.  AML  does  not  seek  to
explicitly reduce error rate.  Re-
duction  of  error  rate  occurs
naturally as a result of subdirect
irreducibility,  maximization  of
freedom  and  minimization  of
size.
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Symbolic AI Neural networks AML

Learn from data ⬤ ⬤ ⬤

Learn from formulas ⬤ ⬤ ⬤

Transparency ⬤ ⬤ ⬤

Generate its own representation of the data ⬤ ⬤ ⬤

Symbols or parameters are modified over training ⬤ ⬤ ⬤

Parameter or symbol count changes during training ⬤ ⬤ ⬤

Models can be combined ⬤ ⬤ ⬤

Table 1: Comparison between symbolic AI, neural networks, and algebraic machine learning



ALMA
The ALMA [8] project relies

on  the  use  of  Algebraic  Ma-
chine Learning and, so far,  has
applied AML to a range of tasks,
including robotics, the recogni-
tion of human motion from ac-
celerometer data or the identifi-
cation of gestures in on-screen
keyboards. The ALMA project is
a research collaboration that in-
volves multiple labs across Eu-
rope. The project is  part of an
effort  by  the  European  Com-
mission to explore radically new
ideas in the field of AI.

Research  in  AML  is  led  by
the  Champalimaud  Foundation
and Algebraic AI.
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Unique capabilities of AML
AML has features that could be key to building safer and less

centralized AI applications:

User-defined symbols – Algebraic Machine Learning (AML) com-
bines the advantages of using user-defined symbols with the
capability to generate internal representations and learn from
data. 

Set goals and constraints – User-defined symbols can be used to
set goals and constraints using formulas which provide a more
controllable behavior and better transparency.

Low sensitivity  to  data  distribution –  AML is  not  a  statistical
method and is less sensitive to the particular frequency distri-
bution of the input data. 

Perfect memory – AML systems do not forget one thing when
taught another. 

No overfit – AML models do not overfit. 
Reduced number of hyperparameters – There is no need to fit

parameters and the number of hyperparameters is very small,
often reduced to little more than batch size.

Multi-domain – AML can resolve problems on very different do-
mains,  from  supervised  pattern  recognition  to  unsupervised
learning of games, to resolving sudokus from the rules of the
game or even to find Hamiltonian paths (without using back-
tracking or even search). 

Continuous and discrete symbols – AML can use continuous and
discrete input and output.

Single algorithm – AML relies on a single, problem-independent
algorithm, with no need for custom architectures. 

Models can be combined – The subsets of atoms that satisfy the
embedding have a “linearity property”[5]: the union of two or
more of said subsets of atoms also spawn a model that satisfies
the embedding formulas.

Scalable and parallelizable – As a consequence of the linearity,
AML models can be computed in parallel,  to the extent that
models can be trained separately and asynchronously, only to
be combined at a later stage. This is due to the fact that atoms
can be calculated independently.  This opens the door to the
possibility of using scalable distributed systems with inexpen-
sive hardware and network setups. 

New mathematical approach – AML is very amenable to mathe-
matical analysis and is a mostly unexplored field of research in
which ideas from abstract algebra can potentially be brought to
the field of symbolic AI. Ideas from adjacent fields such as Ga-
lois theory, topology or model theory could potentially be ap-
plied here. Furthermore, crossbreeding of ideas with the field
of deep learning could be fructiferous to both. 
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